A History of Aeronautics






XIX. THE WAR PERIOD—I

Full record of aeronautical progress and of the accomplishments of pilots in the years of the War would demand not merely a volume, but a complete library, and even then it would be barely possible to pay full tribute to the heroism of pilots of the war period. There are names connected with that period of which the glory will not fade, names such as Bishop, Guynemer, Boelcke, Ball, Fonck, Immelmann, and many others that spring to mind as one recalls the 'Aces' of the period. In addition to the pilots, there is the stupendous development of the machines—stupendous when the length of the period in which it was achieved is considered.

The fact that Germany was best prepared in the matter of heavier-than-air service machines in spite of the German faith in the dirigible is one more item of evidence as to who forced hostilities. The Germans came into the field with well over 600 aeroplanes, mainly two-seaters of standardised design, and with factories back in the Fatherland turning out sufficient new machines to make good the losses. There were a few single-seater scouts built for speed, and the two-seater machines were all fitted with cameras and bomb-dropping gear. Manoeuvres had determined in the German mind what should be the uses of the air fleet; there was photography of fortifications and field works; signalling by Very lights; spotting for the guns, and scouting for news of enemy movements. The methodical German mind had arranged all this beforehand, but had not allowed for the fact that opponents might take counter-measures which would upset the over-perfect mechanism of the air service just as effectually as the great march on Paris was countered by the genius of Joffre.

The French Air Force at the beginning of the War consisted of upwards of 600 machines. These, unlike the Germans, were not standardised, but were of many and diverse types. In order to get replacements quickly enough, the factories had to work on the designs they had, and thus for a long time after the outbreak of hostilities standardisation was an impossibility. The versatility of a Latin race in a measure compensated for this; from the outset, the Germans tried to overwhelm the French Air Force, but failed, since they had not the numerical superiority, nor—this equally a determining factor—the versatility and resource of the French pilots. They calculated on a 50 per cent superiority to ensure success; they needed more nearly 400 per cent, for the German fought to rule, avoiding risks whenever possible, and definitely instructed to save both machines and pilots wherever possible. French pilots, on the other hand, ran all the risks there were, got news of German movements, bombed the enemy, and rapidly worked up a very respectable antiaircraft force which, whatever it may have accomplished in the way of hitting German planes, got on the German pilots' nerves.

It has already been detailed how Britain sent over 82 planes as its contribution to the military aerial force of 1914. These consisted of Farman, Caudron, and Short biplanes, together with Bleriot, Deperdussin and Nieuport monoplanes, certain R.A.F. types, and other machines of which even the name barely survives—the resourceful Yankee entitles them 'orphans.' It is on record that the work of providing spares might have been rather complicated but for the fact that there were none.

There is no doubt that the Germans had made study of aerial military needs just as thoroughly as they had perfected their ground organisation. Thus there were 21 illuminated aircraft stations in Germany before the War, the most powerful being at Weimar, where a revolving electric flash of over 27 million candle-power was located. Practically all German aeroplane tests in the period immediately preceding the War were of a military nature, and quite a number of reliability tests were carried out just on the other side of the French frontier. Night flying and landing were standardised items in the German pilot's course of instruction while they were still experimental in other countries, and a system of signals was arranged which rendered the instructional course as perfect as might be.

The Belgian contribution consisted of about twenty machines fit for active service and another twenty which were more or less useful as training machines. The material was mainly French, and the Belgian pilots used it to good account until German numbers swamped them. France, and to a small extent England, kept Belgian aviators supplied with machines throughout the War.

The Italian Air Fleet was small, and consisted of French machines together with a percentage of planes of Italian origin, of which the design was very much a copy of French types. It was not until the War was nearing its end that the military and naval services relied more on the home product than on imports. This does not apply to engines, however, for the F.I.A.T. and S.C.A.T. were equal to practically any engine of Allied make, both in design and construction.

Russia spent vast sums in the provision of machines: the giant Sikorsky biplane, carrying four 100 horsepower Argus motors, was designed by a young Russian engineer in the latter part of 1913, and in its early trials it created a world's record by carrying seven passengers for 1 hour 54 minutes. Sikorsky also designed several smaller machines, tractor biplanes on the lines of the British B.E. type, which were very successful. These were the only home productions, and the imports consisted mainly of French aeroplanes by the hundred, which got as far as the docks and railway sidings and stayed there, while German influence and the corruption that ruined the Russian Army helped to lose the War. A few Russian aircraft factories were got into operation as hostilities proceeded, but their products were negligible, and it is not on record that Russia ever learned to manufacture a magneto.

The United States paid tribute to British efficiency by adopting the British system of training for its pilots; 500 American cadets were trained at the School of Military Aeronautics at oxford, in order to form a nucleus for the American aviation schools which were subsequently set up in the United States and in France. As regards production of craft, the designing of the Liberty engine and building of over 20,000 aeroplanes within a year proves that America is a manufacturing country, even under the strain of war.

There were three years of struggle for aerial supremacy, the combatants being England and France against Germany, and the contest was neck and neck all the way. Germany led at the outset with the standardised two-seater biplanes manned by pilots and observers, whose training was superior to that afforded by any other nation, while the machines themselves were better equipped and fitted with accessories. All the early German aeroplanes were designated Taube by the uninitiated, and were formed with swept-back, curved wings very much resembling the wings of a bird. These had obvious disadvantages, but the standardisation of design and mass production of the German factories kept them in the field for a considerable period, and they flew side by side with tractor biplanes of improved design. For a little time, the Fokker monoplane became a definite threat both to French and British machines. It was an improvement on the Morane French monoplane, and with a high-powered engine it climbed quickly and flew fast, doing a good deal of damage for a brief period of 1915. Allied design got ahead of it and finally drove it out of the air.

German equipment at the outset, which put the Allies at a disadvantage, included a hand-operated magneto engine-starter and a small independent screw which, mounted on one of the main planes, drove the dynamo used for the wireless set. Cameras were fitted on practically every machine; equipment included accurate compasses and pressure petrol gauges, speed and height recording instruments, bomb-dropping fittings and sectional radiators which facilitated repairs and gave maximum engine efficiency in spite of variations of temperature. As counter to these, the Allied pilots had resource amounting to impudence. In the early days they carried rifles and hand grenades and automatic pistols. They loaded their machines down, often at their own expense, with accessories and fittings until their aeroplanes earned their title of Christmas trees. They played with death in a way that shocked the average German pilot of the War's early stages, declining to fight according to rule and indulging in the individual duels of the air which the German hated. As Sir John French put it in one of his reports, they established a personal ascendancy over the enemy, and in this way compensated for their inferior material.

French diversity of design fitted in well with the initiative and resource displayed by the French pilots. The big Caudron type was the ideal bomber of the early days; Farman machines were excellent for reconnaissance and artillery spotting; the Bleriots proved excellent as fighting scouts and for aerial photography; the Nieuports made good fighters, as did the Spads, both being very fast craft, as were the Morane-Saulnier monoplanes, while the big Voisin biplanes rivalled the Caudron machines as bombers.

The day of the Fokker ended when the British B.E.2.C. aeroplane came to France in good quantities, and the F.E. type, together with the De Havilland machines, rendered British aerial superiority a certainty. Germany's best reply—this was about 1916—was the Albatross biplane, which was used by Captain Baron von Richthofen for his famous travelling circus, manned by German star pilots and sent to various parts of the line to hearten up German troops and aviators after any specially bad strafe. Then there were the Aviatik biplane and the Halberstadt fighting scout, a cleanly built and very fast machine with a powerful engine with which Germany tried to win back superiority in the third year of the War, but Allied design kept about three months ahead of that of the enemy, once the Fokker had been mastered, and the race went on. Spads and Bristol fighters, Sopwith scouts and F.E.'s played their part in the race, and design was still advancing when peace came.

The giant twin-engined Handley-Page bomber was tried out, proved efficient, and justly considered better than anything of its kind that had previously taken the field. Immediately after the conclusion of its trials, a specimen of the type was delivered intact at Lille for the Germans to copy, the innocent pilot responsible for the delivery doing some great disservice to his own cause. The Gotha Wagon-Fabrik Firm immediately set to work and copied the Handley-Page design, producing the great Gotha bombing machine which was used in all the later raids on England as well as for night work over the Allied lines.

How the War advanced design may be judged by comparison of the military requirements given for the British Military Trials of 1912, with performances of 1916 and 1917, when the speed of the faster machines had increased to over 150 miles an hour and Allied machines engaged enemy aircraft at heights ranging up to 22,000 feet. All pre-war records of endurance, speed, and climb went by the board, as the race for aerial superiority went on.

Bombing brought to being a number of crude devices in the first year of the War. Allied pilots of the very early days carried up bombs packed in a small box and threw them over by hand, while, a little later, the bombs were strung like apples on wings and undercarriage, so that the pilot who did not get rid of his load before landing risked an explosion. Then came a properly designed carrying apparatus, crude but fairly efficient, and with 1916 development had proceeded as far as the proper bomb-racks with releasing gear.

Reconnaissance work developed, so that fighting machines went as escort to observing squadrons and scouting operations were undertaken up to 100 miles behind the enemy lines; out of this grew the art of camouflage, when ammunition dumps were painted to resemble herds of cows, guns were screened by foliage or painted to merge into a ground scheme, and many other schemes were devised to prevent aerial observation. Troops were moved by night for the most part, owing to the keen eyes of the air pilots and the danger of bombs, though occasionally the aviator had his chance. There is one story concerning a British pilot who, on returning from a reconnaissance flight, observed a German Staff car on the road under him; he descended and bombed and machine—gunned the car until the German General and his chauffeur abandoned it, took to their heels, and ran like rabbits. Later still, when Allied air superiority was assured, there came the phase of machine-gunning bodies of enemy troops from the air. Disregarding all antiaircraft measures, machines would sweep down and throw battalions into panic or upset the military traffic along a road, demoralising a battery or a transport train and causing as much damage through congestion of traffic as with their actual machine-gun fire. Aerial photography, too, became a fine art; the ordinary long focus cameras were used at the outset with automatic plate changers, but later on photographing aeroplanes had cameras of wide angle lens type built into the fuselage. These were very simply operated, one lever registering the exposure and changing the plate. In many cases, aerial photographs gave information which the human eye had missed, and it is noteworthy that photographs of ground showed when troops had marched over it, while the aerial observer was quite unable to detect the marks left by their passing.

Some small mention must be made of seaplane activities, which, round the European coasts involved in the War, never ceased. The submarine campaign found in the spotting seaplane its greatest deterrent, and it is old news now how even the deeply submerged submarines were easily picked out for destruction from a height and the news wirelessed from seaplane to destroyer, while in more than one place the seaplane itself finished the task by bomb dropping. It was a seaplane that gave Admiral Beatty the news that the whole German Fleet was out before the Jutland Battle, news which led to a change of plans that very nearly brought about the destruction of Germany's naval power. For the most part, the seaplanes of the War period were heavier than the land machines and, in the opinion of the land pilots, were slow and clumsy things to fly. This was inevitable, for their work demanded more solid building and greater reliability. To put the matter into Hibernian phrase, a forced landing at sea is a much more serious matter than on the ground. Thus there was need for greater engine power, bigger wingspread to support the floats, and fuel tanks of greater capacity. The flying boats of the later War period carried considerable crews, were heavily armed, capable of withstanding very heavy weather, and carried good loads of bombs on long cruises. Their work was not all essentially seaplane work, for the R.N.A.S. was as well known as hated over the German airship sheds in Belgium and along the Flanders coast. As regards other theatres of War, they rendered valuable service from the Dardanelles to the Rufiji River, at this latter place forming a principal factor in the destruction of the cruiser Konigsberg. Their spotting work at the Dardanelles for the battleships was responsible for direct hits from 15 in. guns on invisible targets at ranges of over 12,000 yards. Seaplane pilots were bombing specialists, including among their targets army headquarters, ammunition dumps, railway stations, submarines and their bases, docks, shipping in German harbours, and the German Fleet at Wilhelmshaven. Dunkirk, a British seaplane base, was a sharp thorn in the German side.

Turning from consideration of the various services to the exploits of the men composing them, it is difficult to particularise. A certain inevitable prejudice even at this length of time leads one to discount the valour of pilots in the German Air Service, but the names of Boelcke, von Richthofen, and Immelmann recur as proof of the courage that was not wanting in the enemy ranks, while, however much we may decry the Gotha raids over the English coast and on London, there is no doubt that the men who undertook these raids were not deficient in the form of bravery that is of more value than the unthinking valour of a minute which, observed from the right quarter, wins a military decoration.

Yet the fact that the Allied airmen kept the air at all in the early days proved on which side personal superiority lay, for they were outnumbered, out-manoeuvred, and faced by better material than any that they themselves possessed; yet they won their fights or died. The stories of their deeds are endless; Bishop, flying alone and meeting seven German machines and crashing four; the battle of May 5th, 1915, when five heroes fought and conquered twenty-seven German machines, ranging in altitude between 12,000 and 3,000 feet, and continuing the extraordinary struggle from five until six in the evening. Captain Aizlewood, attacking five enemy machines with such reckless speed that he rammed one and still reached his aerodrome safely—these are items in a long list of feats of which the character can only be realised when it is fully comprehended that the British Air Service accounted for some 8,000 enemy machines in the course of the War. Among the French there was Captain Guynemer, who at the time of his death had brought down fifty-four enemy machines, in addition to many others of which the destruction could not be officially confirmed. There was Fonck, who brought down six machines in one day, four of them within two minutes.

There are incredible stories, true as incredible, of shattered men carrying on with their work in absolute disregard of physical injury. Major Brabazon Rees, V.C., engaged a big German battle-plane in September of 1915 and, single-handed, forced his enemy out of action. Later in his career, with a serious wound in the thigh from which blood was pouring, he kept up a fight with an enemy formation until he had not a round of ammunition left, and then returned to his aerodrome to get his wound dressed. Lieutenants Otley and Dunning, flying in the Balkans, engaged a couple of enemy machines and drove them off, but not until their petrol tank had got a hole in it and Dunning was dangerously wounded in the leg. Otley improvised a tourniquet, passed it to Dunning, and, when the latter had bandaged himself, changed from the observer's to the pilot's seat, plugged the bullet hole in the tank with his thumb and steered the machine home.

These are incidents; the full list has not been, and can never be recorded, but it goes to show that in the pilot of the War period there came to being a new type of humanity, a product of evolution which fitted a certain need. Of such was Captain West, who, engaging hostile troops, was attacked by seven machines. Early in the engagement, one of his legs was partially severed by an explosive bullet and fell powerless into the controls, rendering the machine for the time unmanageable. Lifting his disabled leg, he regained control of the machine, and although wounded in the other leg, he manoeuvred his machine so skilfully that his observer was able to get several good bursts into the enemy machines, driving them away. Then, desperately wounded as he was, Captain West brought the machine over to his own lines and landed safely. He fainted from loss of blood and exhaustion, but on regaining consciousness, insisted on writing his report. Equal to this was the exploit of Captain Barker, who, in aerial combat, was wounded in the right and left thigh and had his left arm shattered, subsequently bringing down an enemy machine in flames, and then breaking through another hostile formation and reaching the British lines.

In recalling such exploits as these, one is tempted on and on, for it seems that the pilots rivalled each other in their devotion to duty, this not confined to British aviators, but common practically to all services. Sufficient instances have been given to show the nature of the work and the character of the men who did it.

The rapid growth of aerial effort rendered it necessary in January of 1915 to organise the Royal Flying Corps into separate wings, and in October of the same year it was constituted in Brigades. In 1916 the Air Board was formed, mainly with the object of co-ordinating effort and ensuring both to the R.N.A.S. and to the R.F.C. adequate supplies of material as far as construction admitted. Under the presidency of Lord Cowdray, the Air Board brought about certain reforms early in 1917, and in November of that year a separate Air Ministry was constituted, separating the Air Force from both Navy and Army, and rendering it an independent force. On April 1st, 1918, the Royal Air Force came into existence, and unkind critics in the Royal Flying Corps remarked on the appropriateness of the date. At the end of the War, the personnel of the Royal Air Force amounted to 27,906 officers, and 263,842 other ranks. Contrast of these figures with the number of officers and men who took the field in 1914 is indicative of the magnitude of British aerial effort in the War period.

All books are sourced from Project Gutenberg